RSCG Examples
Andrei Ignat
Table of Contents

About this book
Content of the book
You will find in this book code examples about >10 Roslyn Source Code Generator (RSCG) that can be useful for you. That means, you will write more elegant and concise code - even if the generators code is not always nice to look.
Are those examples ready for production?
I have done due diligence to test the RSCG that I have shown to you here. However, I cannot guarantee that will fit your code. That means that you can test it for your case and, because all are open source on Github.com, you can contribute to improve them ;-)
How to read this book
For each chapter, you will find
1. Name of the RSCG and link to the NuGet package / GitHub repository
1. What the RSCG can do
1. What you need to include in .csproj file
1. What will be the initial code
1. How to use the Code generated by RSCG
1. Code Generated by RSCG
1. Link to the downloadable code to practice
I have a suggestion for a new RSCG that is worth mentioning in this book. What can I do?
Please send me an email to ignatandrei@yahoo.com
I want to make a RSCG that will be useful. How can I do?
In the introduction I have put the links to get you started with RSCG.
And, if you bought this book from Amazon, you are entitled to have 1 hour free of consultancy with me. I can help you make one.
I want the book / sponsor you
Glad that you have asked. Please goto Amazon: https://amzn.to/3f6gll3
(and this will remain free: https://ignatandrei.github.io/RSCG_Examples/)
About the author
[image: http://ignatandrei.github.io/RSCG_Examples/andrei.jpeg]
My name is Andrei Ignat and I have 20+ years programming experience.
I have started from VB3 , passed via plain old ASP
I am C# Microsoft Most Valuable Professional, and also https://forums.asp.net moderator .
Before that I was a teacher.
I am available also on
LinkedIN : http://ro.linkedin.com/in/ignatandrei
Facebook : http://www.facebook.com/ignat.andrei
Twitter: http://twitter.com/ignatandrei
You can ask me any .NET related question . I will be glad to answer – if I know the answer. If not, I will learn.
Introduction
What is a Roslyn Source Code Generator?
A Roslyn Source Code Generator (RSCG) is a program that generates code in the compile time, based on the previous source code and/or another data. This new source code is added to the compilation and compile with the previous source code.
How can I make a Roslyn Source Code Generator?
For creating the RSCG you will simply create a .NET Standard 2.0 project, add those 2 references

 <PackageReference Include="Microsoft.CodeAnalysis.Analyzers" Version="3.3.1" PrivateAssets="all" />
 <PackageReference Include="Microsoft.CodeAnalysis.CSharp" Version="3.8.0" />
and start implementing

public interface ISourceGenerator
{
 void Initialize(GeneratorInitializationContext context);
 void Execute(GeneratorExecutionContext context);
}
Start from examples at https://github.com/dotnet/roslyn-sdk/tree/main/samples/CSharp/SourceGenerators Also, you can read the source code for the RSCG presented in this book.
Show me some code for RSCG
Start read
https://github.com/dotnet/roslyn/blob/main/docs/features/source-generators.md
and
https://github.com/dotnet/roslyn/blob/main/docs/features/source-generators.cookbook.md .
After that, you can play with the examples from https://github.com/dotnet/roslyn-sdk/tree/main/samples/CSharp/SourceGenerators or from https://sourcegen.dev/ (see AutoNotify in the dropdown)
How the RSCG can help me to write faster / better the code ?
Glad that you asked. You can see in action a RSCG for automatically generating code for automating testing (see DynamicMocking) , parsing enum (see Enum) , generating controllers actions from a interface (SkinnyControllers), currying functions and many more. In this book you will find more than 10 examples of some RSCG that can help you. Also, you can find the source code of the examples at https://github.com/ignatandrei/RSCG_Examples.
RSCG number 1 : ThisAssembly
What RSCG ThisAssembly can do
The ThisAssembly.Info allows you access to the Assembly Information as constants, instead of going to reflection each time. I found useful to see the assembly version right away in any project that I have.
Example code
Here is the csproj with the references for RSCG ThisAssembly
[image: http://ignatandrei.github.io/RSCG_Examples/images/ThisAssembly/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/ThisAssembly/ExistingCode.cs.png] code
The code below will use the RSCG ThisAssembly
[image: http://ignatandrei.github.io/RSCG_Examples/images/ThisAssembly/Usage.cs.png] code
The code that is generated by RSCG ThisAssembly
[image: http://ignatandrei.github.io/RSCG_Examples/images/ThisAssembly/GeneratedCode.cs.png] code
More details about RSCG ThisAssembly
The author of RSCG ThisAssembly is Daniel Cazzulino
You cand find RSCG ThisAssembly at Nuget.org : https://www.nuget.org/packages/ThisAssembly and the sources at https://github.com/devlooped/ThisAssembly
For more usage features please read : https://www.clarius.org/ThisAssembly/
Link to Example Code:

RSCG number 2 : Enum
What RSCG Enum can do
This will generate code to fast parsing a int or a string to an enum
Example code
Here is the csproj with the references for RSCG Enum
[image: http://ignatandrei.github.io/RSCG_Examples/images/Enum/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/Enum/ExistingCode.cs.png] code
The code below will use the RSCG Enum
[image: http://ignatandrei.github.io/RSCG_Examples/images/Enum/Usage.cs.png] code
The code that is generated by RSCG Enum
[image: http://ignatandrei.github.io/RSCG_Examples/images/Enum/GeneratedCode.cs.png] code
More details about RSCG Enum
The author of RSCG Enum is Andrei Ignat
You cand find RSCG Enum at Nuget.org : https://www.nuget.org/packages/AOPMethodsCommon/ https://www.nuget.org/packages/AOPMethodsGenerator/ and the sources at http://github.com/ignatandrei/aop_With_Roslyn/
For more usage features please read : http://msprogrammer.serviciipeweb.ro/category/roslyn/
Link to Example Code:

RSCG number 3 : JsonByExampleGenerator
What RSCG JsonByExampleGenerator can do
This will generate C# classes from json files.
Example code
Here is the csproj with the references for RSCG JsonByExampleGenerator
[image: http://ignatandrei.github.io/RSCG_Examples/images/JsonByExampleGenerator/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/JsonByExampleGenerator/ExistingCode.cs.png] code
The code below will use the RSCG JsonByExampleGenerator
[image: http://ignatandrei.github.io/RSCG_Examples/images/JsonByExampleGenerator/Usage.cs.png] code
The code that is generated by RSCG JsonByExampleGenerator
[image: http://ignatandrei.github.io/RSCG_Examples/images/JsonByExampleGenerator/GeneratedCode.cs.png] code
More details about RSCG JsonByExampleGenerator
The author of RSCG JsonByExampleGenerator is Robin Hermanussen
You cand find RSCG JsonByExampleGenerator at Nuget.org : https://www.nuget.org/packages/JsonByExampleGenerator/ and the sources at https://github.com/hermanussen/JsonByExampleGenerator/
For more usage features please read : https://github.com/hermanussen/JsonByExampleGenerator/
Link to Example Code:

Author of JsonByExampleGenerator , Robin Hermanussen
Short info about you , Robin Hermanussen
I'm a Software Architect at Iquality (software company in the Netherlands). I'm passionate about software development in general, but with a particular interest in .NET.
Why did you start this JsonByExampleGenerator ?
I have written a bunch of C# analyzers in the past that served specific needs and now wanted to get some experience in writing source generators. It seemed like a good idea to me to generate classes based on example JSON, because it replaces a task that I often find a bit tedious; writing data contract classes and then tests to ensure they get properly (de)serialized with the JSON that I'm using.
How do yourself use your JsonByExampleGenerator ?
I'm not really using it in real world projects right now, as I'm not working on any projects that require it.
What other RSCG do you use ?
I've used ThisAssembly and a few others, for learning purposes.
Any other feedback ?
If anyone wants to use JsonByExampleGenerator and give me feedback from the real world, let me know! I'll be happy to help out with any issues or questions you may run into. Just add an issue to the project on GitHub to get in touch.
RSCG number 4 : CopyConstructor + Deconstructor
What RSCG CopyConstructor + Deconstructor can do
This will generate code for a POCO to generate copy constructor and deconstructor
Example code
Here is the csproj with the references for RSCG CopyConstructor + Deconstructor
[image: http://ignatandrei.github.io/RSCG_Examples/images/CopyConstructor%20+%20Deconstructor/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/CopyConstructor%20+%20Deconstructor/ExistingCode.cs.png] code
The code below will use the RSCG CopyConstructor + Deconstructor
[image: http://ignatandrei.github.io/RSCG_Examples/images/CopyConstructor%20+%20Deconstructor/Usage.cs.png] code
The code that is generated by RSCG CopyConstructor + Deconstructor
[image: http://ignatandrei.github.io/RSCG_Examples/images/CopyConstructor%20+%20Deconstructor/GeneratedCode.cs.png] code
More details about RSCG CopyConstructor + Deconstructor
The author of RSCG CopyConstructor + Deconstructor is Andrei Ignat
You cand find RSCG CopyConstructor + Deconstructor at Nuget.org : https://www.nuget.org/packages/AOPMethodsCommon/ https://www.nuget.org/packages/AOPMethodsGenerator/ and the sources at http://github.com/ignatandrei/aop_With_Roslyn/
For more usage features please read : http://msprogrammer.serviciipeweb.ro/category/roslyn/
Link to Example Code:

RSCG number 5 : GeneratedMapper
What RSCG GeneratedMapper can do
AutoMapping from a POCO to a DTO. Lots of customizations
Example code
Here is the csproj with the references for RSCG GeneratedMapper
[image: http://ignatandrei.github.io/RSCG_Examples/images/GeneratedMapper/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/GeneratedMapper/ExistingCode.cs.png] code
The code below will use the RSCG GeneratedMapper
[image: http://ignatandrei.github.io/RSCG_Examples/images/GeneratedMapper/Usage.cs.png] code
The code that is generated by RSCG GeneratedMapper
[image: http://ignatandrei.github.io/RSCG_Examples/images/GeneratedMapper/GeneratedCode.cs.png] code
More details about RSCG GeneratedMapper
The author of RSCG GeneratedMapper is Thomas Bleijendaal
You cand find RSCG GeneratedMapper at Nuget.org : https://www.nuget.org/packages/GeneratedMapper/ and the sources at https://github.com/ThomasBleijendaal/GeneratedMapper
For more usage features please read : https://github.com/ThomasBleijendaal/GeneratedMapper
Link to Example Code:

Author of GeneratedMapper , Thomas Bleijendaal
Short info about you , Thomas Bleijendaal
I'm Thomas Bleijendaal, I'm a .NET developer working for Triple in Alkmaar, The Netherlands.
Why did you start this GeneratedMapper ?
I've started GeneratedMapper to get more familiar with source generation. While the tooling is a bit rough now, I do believe that this feature can really bring a lot of value to .NET.
I've been burned before by a lot of hard-to-find bugs caused by badly behaving mappers and runtime surprises from badly handled null-references. I wanted to create a object-to-object mapper that would be very picky and raise compilation errors instead of runtime exceptions. Being able to see what the mapper will do by simply inspecting the code is very handy, and makes you trust your mapper even more.
How do yourself use your GeneratedMapper ?
I use the GeneratedMapper in a project where I map models coming from Contentful to DTOs that are used in views. I've also tried to use it in another project, but because that targeted an older runtime I could not make that work. But, since I could copy all the generated mappers and maintain those manually, switching away from it wasn't that bad. I think that is also very valuable of code generation, you still have a copy of what a generator made for you.
What other RSCG do you use ?
I haven't really used any other RSCGs yet, other than a metadata generator that Microsoft made for the out-of-process .NET-based Azure Functions (https://github.com/Azure/azure-functions-dotnet-worker/). That stuff is all very preview still, so it could be removed from the product, but it's cool to see Microsoft starting to use it too.
Any other feedback ?
Cool book!
RSCG number 6 : Skinny Controllers
What RSCG Skinny Controllers can do
This will generate code for WebAPI for each method of a field in the controller
Example code
Here is the csproj with the references for RSCG Skinny Controllers
[image: http://ignatandrei.github.io/RSCG_Examples/images/Skinny%20Controllers/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/Skinny%20Controllers/ExistingCode.cs.png] code
The code below will use the RSCG Skinny Controllers
[image: http://ignatandrei.github.io/RSCG_Examples/images/Skinny%20Controllers/Usage.cs.png] code
The code that is generated by RSCG Skinny Controllers
[image: http://ignatandrei.github.io/RSCG_Examples/images/Skinny%20Controllers/GeneratedCode.cs.png] code
More details about RSCG Skinny Controllers
The author of RSCG Skinny Controllers is Andrei Ignat
You cand find RSCG Skinny Controllers at Nuget.org : https://www.nuget.org/packages/SkinnyControllersCommon/ https://www.nuget.org/packages/SkinnyControllersGenerator/ and the sources at http://github.com/ignatandrei/aop_With_Roslyn/
For more usage features please read : http://msprogrammer.serviciipeweb.ro/category/roslyn/
Link to Example Code:

RSCG number 7 : data-builder-generator
What RSCG data-builder-generator can do
Implements the Builder Design pattern for any class. Useful , at least, for test projects
Example code
Here is the csproj with the references for RSCG data-builder-generator
[image: http://ignatandrei.github.io/RSCG_Examples/images/data-builder-generator/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/data-builder-generator/ExistingCode.cs.png] code
The code below will use the RSCG data-builder-generator
[image: http://ignatandrei.github.io/RSCG_Examples/images/data-builder-generator/Usage.cs.png] code
The code that is generated by RSCG data-builder-generator
[image: http://ignatandrei.github.io/RSCG_Examples/images/data-builder-generator/GeneratedCode.cs.png] code
More details about RSCG data-builder-generator
The author of RSCG data-builder-generator is Martin Andreas Ulrich
You cand find RSCG data-builder-generator at Nuget.org : https://www.nuget.org/packages/DasMulli.DataBuilderGenerator/ and the sources at https://github.com/dasMulli/data-builder-generator
For more usage features please read : https://github.com/dasMulli/data-builder-generator
Link to Example Code:

Author of data-builder-generator , Martin Andreas Ulrich
Short info about you , Martin Andreas Ulrich
I am a software engineer working on diverse tech stacks but focusing mostly on .NET in C#, Web Technologies and iOS/Swift.
I am a technology enthusiast who always works on improving development and DevOps processes at our company to make life easier for developers and help deliver high. I was awarded Microsoft MVP for community and open-source work around .NET Core.
Why did you start this data-builder-generator ?
How do yourself use your data-builder-generator ?
In "enterprise" contexts (I hate that term) one usually has to deal with business logic working on data objects. Writing tests is really important in these contexts but creating lots of test data for various scenarios can be quite cumbersome. You usually have some set of defaults (e.g. a base order with a dummy customer and items, an insurance application from a dummy customer etc.) and then deviate from it a little for each scenario. This is where C# 9 records would come in handy, but they were at the time not released and adopting them could be challenging (e.g. proper EF support while we're still on EF Core 3.1 anyway) so we opted for a test data builder approach where the builder classes would be generated. I did something similar a few years back at a previous company based on https://github.com/AArnott/CodeGeneration.Roslyn (which is now archived in favor of rolsyn source generators) and decided that for a current project I'll have a go and try to create something similar based on roslyn. While there are still a few bugs in the generator (get-only properties for example), this works quite well just annotating all EF model POCOs and then creating a few default builders that can be used from tests (Think TestData.DefaultOrder.WithoutCustomerAddress().Build() - extension methods are useful here as well to reuse builder functions that have a business meaning (.WithChecksumMismatchingIBAN())). I hope that many of these concerns can be solved with records in the future, so each .WithXYZ() can be done as a proper with-expression. But until then, autogenerating builder patterns is a good approach. I wanted to hold off refactoring / fixing bugs for advanced use cases until a few first-party generators exist and we know what performance pitfalls to look out for. Since we were using them when generators were in preview, we also had to deal with breaking changes in the API which was a bit of pain.
What other RSCG do you use ?
Currently this is the only one. I hope that OpenAPI processing / generation will be a source generator soon - this is currently patched in via NSwag/MSBuild for some projects.
Any other feedback ?
As mentioned I hope that some patterns of how to implement fast source generators emerge. This one likely isn't the best but I wanted to hold off a few months before refactoring. I don't plan on making a huge deal out of it, I just thought it's good to put useful tools we're building on GitHub for discussion and maybe it helps someone else as well.
RSCG number 8 : Metadata from object
What RSCG Metadata from object can do
This will generate code to retrieve the values of properties directly, not by reflection
Example code
Here is the csproj with the references for RSCG Metadata from object
[image: http://ignatandrei.github.io/RSCG_Examples/images/Metadata%20from%20object/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/Metadata%20from%20object/ExistingCode.cs.png] code
The code below will use the RSCG Metadata from object
[image: http://ignatandrei.github.io/RSCG_Examples/images/Metadata%20from%20object/Usage.cs.png] code
The code that is generated by RSCG Metadata from object
[image: http://ignatandrei.github.io/RSCG_Examples/images/Metadata%20from%20object/GeneratedCode.cs.png] code
More details about RSCG Metadata from object
The author of RSCG Metadata from object is Andrei Ignat
You cand find RSCG Metadata from object at Nuget.org : https://www.nuget.org/packages/AOPMethodsCommon/ https://www.nuget.org/packages/AOPMethodsGenerator/ and the sources at http://github.com/ignatandrei/aop_With_Roslyn/
For more usage features please read : http://msprogrammer.serviciipeweb.ro/category/roslyn/
Link to Example Code:

RSCG number 9 : MockSourceGenerator
What RSCG MockSourceGenerator can do
This will generate Mock classes directly for any interface - with your implementation.
Example code
Here is the csproj with the references for RSCG MockSourceGenerator
[image: http://ignatandrei.github.io/RSCG_Examples/images/MockSourceGenerator/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/MockSourceGenerator/ExistingCode.cs.png] code
The code below will use the RSCG MockSourceGenerator
[image: http://ignatandrei.github.io/RSCG_Examples/images/MockSourceGenerator/Usage.cs.png] code
The code that is generated by RSCG MockSourceGenerator
[image: http://ignatandrei.github.io/RSCG_Examples/images/MockSourceGenerator/GeneratedCode.cs.png] code
More details about RSCG MockSourceGenerator
The author of RSCG MockSourceGenerator is Robin Hermanussen
You cand find RSCG MockSourceGenerator at Nuget.org : https://www.nuget.org/packages/MockSourceGenerator/ and the sources at https://github.com/hermanussen/MockSourceGenerator/
For more usage features please read : https://github.com/hermanussen/MockSourceGenerator/
Link to Example Code:

Author of MockSourceGenerator , Robin Hermanussen
Short info about you , Robin Hermanussen
I'm a Software Architect at Iquality (software company in the Netherlands). I'm passionate about software development in general, but with a particular interest in .NET.
Why did you start this MockSourceGenerator ?
I have written a bunch of C# analyzers in the past that served specific needs and now wanted to get some experience in writing source generators. The thing about libraries like Moq or NSubstitute that I don't really like is how it takes so much code to set them up and then I don't find them very readable. MockSourceGenerator takes an approach that allows people to mock something in a single statement (with an object initializer) and I think it is more readable this way.
How do yourself use your MockSourceGenerator ?
I'm not really using it in real world projects right now, as I'm not working on any projects that require it.
What other RSCG do you use ?
I've used ThisAssembly and a few others, for learning purposes.
Any other feedback ?
If anyone wants to use MockSourceGenerator and give me feedback from the real world, let me know! I'll be happy to help out with any issues or questions you may run into. Just add an issue to the project on GitHub to get in touch.
RSCG number 10 : Method decorator
What RSCG Method decorator can do
This will generate code to decorate methods with anything you want (stopwatch, logging , authorization...)
Example code
Here is the csproj with the references for RSCG Method decorator
[image: http://ignatandrei.github.io/RSCG_Examples/images/Method%20decorator/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/Method%20decorator/ExistingCode.cs.png] code
The code below will use the RSCG Method decorator
[image: http://ignatandrei.github.io/RSCG_Examples/images/Method%20decorator/Usage.cs.png] code
The code that is generated by RSCG Method decorator
[image: http://ignatandrei.github.io/RSCG_Examples/images/Method%20decorator/GeneratedCode.cs.png] code
More details about RSCG Method decorator
The author of RSCG Method decorator is Andrei Ignat
You cand find RSCG Method decorator at Nuget.org : https://www.nuget.org/packages/AOPMethodsCommon/ https://www.nuget.org/packages/AOPMethodsGenerator/ and the sources at http://github.com/ignatandrei/aop_With_Roslyn/
For more usage features please read : http://msprogrammer.serviciipeweb.ro/category/roslyn/
Link to Example Code:

RSCG number 11 : PartiallyApplied
What RSCG PartiallyApplied can do
This will generate curry for your functions
Example code
Here is the csproj with the references for RSCG PartiallyApplied
[image: http://ignatandrei.github.io/RSCG_Examples/images/PartiallyApplied/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/PartiallyApplied/ExistingCode.cs.png] code
The code below will use the RSCG PartiallyApplied
[image: http://ignatandrei.github.io/RSCG_Examples/images/PartiallyApplied/Usage.cs.png] code
The code that is generated by RSCG PartiallyApplied
[image: http://ignatandrei.github.io/RSCG_Examples/images/PartiallyApplied/GeneratedCode.cs.png] code
More details about RSCG PartiallyApplied
The author of RSCG PartiallyApplied is Jason Bock
You cand find RSCG PartiallyApplied at Nuget.org : https://www.nuget.org/packages/PartiallyApplied/ and the sources at https://github.com/JasonBock/PartiallyApplied
For more usage features please read : https://github.com/JasonBock/PartiallyApplied
Link to Example Code:

RSCG number 12 : IFormattable
What RSCG IFormattable can do
This will generate code to add IFormattable to any class, based on the properties of the class
Example code
Here is the csproj with the references for RSCG IFormattable
[image: http://ignatandrei.github.io/RSCG_Examples/images/IFormattable/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/IFormattable/ExistingCode.cs.png] code
The code below will use the RSCG IFormattable
[image: http://ignatandrei.github.io/RSCG_Examples/images/IFormattable/Usage.cs.png] code
The code that is generated by RSCG IFormattable
[image: http://ignatandrei.github.io/RSCG_Examples/images/IFormattable/GeneratedCode.cs.png] code
More details about RSCG IFormattable
The author of RSCG IFormattable is Andrei Ignat
You cand find RSCG IFormattable at Nuget.org : https://www.nuget.org/packages/AOPMethodsCommon/ https://www.nuget.org/packages/AOPMethodsGenerator/ and the sources at http://github.com/ignatandrei/aop_With_Roslyn/
For more usage features please read : http://msprogrammer.serviciipeweb.ro/category/roslyn/
Link to Example Code:

RSCG number 13 : AutoInterface
What RSCG AutoInterface can do
Implement the Design Pattern Decorator. Based on template - you can modify the source code generated
Example code
Here is the csproj with the references for RSCG AutoInterface
[image: http://ignatandrei.github.io/RSCG_Examples/images/AutoInterface/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/AutoInterface/ExistingCode.cs.png] code
The code below will use the RSCG AutoInterface
[image: http://ignatandrei.github.io/RSCG_Examples/images/AutoInterface/Usage.cs.png] code
The code that is generated by RSCG AutoInterface
[image: http://ignatandrei.github.io/RSCG_Examples/images/AutoInterface/GeneratedCode.cs.png] code
More details about RSCG AutoInterface
The author of RSCG AutoInterface is beakona
You cand find RSCG AutoInterface at Nuget.org : https://www.nuget.org/packages/BeaKona.AutoInterfaceGenerator and the sources at https://github.com/beakona/AutoInterface
For more usage features please read : https://github.com/beakona/AutoInterface
Link to Example Code:

Author of AutoInterface , beakona
Short info about you , beakona
I am a dad and software developer with more than 15 years of working experience in various industries and technologies. I am working mostly on embedded and desktop solutions mainly in C and C#.
Why did you start this AutoInterface ?
After the Source Generator public announcement, I decided to give them a try. I realized that Source Generators would allow us to explore composition-over-inheritance in its new form (from C# perspective). Technically, this approach uses interface invocation (which impacts performance) but one can view it as one form of composition. I consider myself a language designer and I wanted to explore the mechanics of this approach (regardless of poor performance) on existing and reputable language that I use daily.
How do yourself use your AutoInterface ?
I use it experimentally as a tool that allows a class to be composed-of-members and yet acts as inherited-as. Young and experimental languages have similar concepts as an alternative to inheritance. Those who find this interesting can explore the approach chosen by Jonathan Blow in its language Jai
What other RSCG do you use ?
There is only one Source Generator that I use in production; AutoCoder and it is not public because I didn't find time to make it configurable and polished. It automatically implements ICoding interface for the target class (Bridge pattern). I have been using this approach for years because the existing infrastructure does not work for me. The main concept is inspired by Foundation framework class NSCoder but is implemented in the C# way. Abstraction-side has two directions IEncoding/IDecoding and there are two implementers: IEncoder and IDecoder. AutoCoder acts on behalf of the abstraction side by offering targeted fields/properties to IEncoder/IDecoder. The author of IEncoder/IDecoder can decide what, how, when, and in which context to encode/decode. In other words, AutoCoder automates boring stuff and does not make typos.
Any other feedback ?
If you have special, funny, or helpful paragraphs that acts like mentor or life coach concept I think there is worth mentioning TED talk: Why you will fail to have a great career by Larry Smith or book: "Hold on to Your Kids: Why Parents Need to Matter More Than Peers", 2019, by Dr. Gabor Maté and Gordon Neufeld.
RSCG number 14 : Property Expression Generator
What RSCG Property Expression Generator can do
This will generate code to add function to be used with Entity Framework to search for any property of a class
Example code
Here is the csproj with the references for RSCG Property Expression Generator
[image: http://ignatandrei.github.io/RSCG_Examples/images/Property%20Expression%20Generator/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/Property%20Expression%20Generator/ExistingCode.cs.png] code
The code below will use the RSCG Property Expression Generator
[image: http://ignatandrei.github.io/RSCG_Examples/images/Property%20Expression%20Generator/Usage.cs.png] code
The code that is generated by RSCG Property Expression Generator
[image: http://ignatandrei.github.io/RSCG_Examples/images/Property%20Expression%20Generator/GeneratedCode.cs.png] code
More details about RSCG Property Expression Generator
The author of RSCG Property Expression Generator is Andrei Ignat
You cand find RSCG Property Expression Generator at Nuget.org : https://www.nuget.org/packages/AOPMethodsCommon/ https://www.nuget.org/packages/AOPMethodsGenerator/ and the sources at http://github.com/ignatandrei/aop_With_Roslyn/
For more usage features please read : http://msprogrammer.serviciipeweb.ro/category/roslyn/
Link to Example Code:

RSCG number 15 : Transplator
What RSCG Transplator can do
The Transplator is a small fast rendering engine to allow you to make rendering from any class instance.
Example code
Here is the csproj with the references for RSCG Transplator
[image: http://ignatandrei.github.io/RSCG_Examples/images/Transplator/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/Transplator/ExistingCode.cs.png] code
The code below will use the RSCG Transplator
[image: http://ignatandrei.github.io/RSCG_Examples/images/Transplator/Usage.cs.png] code
The code that is generated by RSCG Transplator
[image: http://ignatandrei.github.io/RSCG_Examples/images/Transplator/GeneratedCode.cs.png] code
More details about RSCG Transplator
The author of RSCG Transplator is Atif Aziz
You cand find RSCG Transplator at Nuget.org : https://www.nuget.org/packages/Transplator/ and the sources at https://github.com/atifaziz/Transplator/
For more usage features please read : https://github.com/atifaziz/Transplator/
Link to Example Code:

RSCG number 16 : RSCG_AMS
What RSCG RSCG_AMS can do
The AMS will add in the CI the version and creator to your project.See https://netcoreblockly.herokuapp.com/ams for an example
Example code
Here is the csproj with the references for RSCG RSCG_AMS
[image: http://ignatandrei.github.io/RSCG_Examples/images/RSCG_AMS/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/RSCG_AMS/ExistingCode.cs.png] code
The code below will use the RSCG RSCG_AMS
[image: http://ignatandrei.github.io/RSCG_Examples/images/RSCG_AMS/Usage.cs.png] code
The code that is generated by RSCG RSCG_AMS
[image: http://ignatandrei.github.io/RSCG_Examples/images/RSCG_AMS/GeneratedCode.cs.png] code
More details about RSCG RSCG_AMS
The author of RSCG RSCG_AMS is Andrei Ignat
You cand find RSCG RSCG_AMS at Nuget.org : https://www.nuget.org/packages/AMS_Base https://www.nuget.org/packages/AMSWebAPI https://www.nuget.org/packages/RSCG_AMS and the sources at https://github.com/ignatandrei/RSCG_AMS
For more usage features please read : https://github.com/ignatandrei/RSCG_AMS
Link to Example Code:

RSCG number 17 : HttpClientGenerator
What RSCG HttpClientGenerator can do
HttpClientGenerator is a tool that uses Roslyn code generator feature to write boilerplate HttpClient code for you.
Example code
Here is the csproj with the references for RSCG HttpClientGenerator
[image: http://ignatandrei.github.io/RSCG_Examples/images/HttpClientGenerator/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/HttpClientGenerator/ExistingCode.cs.png] code
The code below will use the RSCG HttpClientGenerator
[image: http://ignatandrei.github.io/RSCG_Examples/images/HttpClientGenerator/Usage.cs.png] code
The code that is generated by RSCG HttpClientGenerator
[image: http://ignatandrei.github.io/RSCG_Examples/images/HttpClientGenerator/GeneratedCode.cs.png] code
More details about RSCG HttpClientGenerator
The author of RSCG HttpClientGenerator is Jalal Amini Robati
You cand find RSCG HttpClientGenerator at Nuget.org : https://www.nuget.org/packages/HttpClientGenerator/ and the sources at https://github.com/Jalalx/HttpClientCodeGenerator
For more usage features please read : https://github.com/Jalalx/HttpClientCodeGenerator
Link to Example Code:

Author of HttpClientGenerator , Jalal Amini Robati
1. Short info about you , Jalal Amini Robati
I am working as a senior software engineer at Alibaba Travels.
1. Why did you start this HttpClientGenerator ?
I built HttpClientGenerator to help users stop writing HttpClient code. Currently, some users use tools like swaggergen which generates too much code that is hard to maintain.
1. How do yourself use your HttpClientGenerator ?
I am going to use it in a high-traffic website on production when it gets mature enough. I mostly use it on my personal projects and look for feedback from developers for now.
1. What other RSCG do you use ?
Since the RSCG is in the early stages, I don't know that many tools but I think it can be applied to many areas like DI, ORMs. Currently Dapper.AOT is using this feature that would make writing database code so much faster.
RSCG number 18 : DatabaseToWebAPI
What RSCG DatabaseToWebAPI can do
This will generate code (WebAPI/Swagger) for any table/view from SqlServer. You can see the table via Angular
Example code
Here is the csproj with the references for RSCG DatabaseToWebAPI
[image: http://ignatandrei.github.io/RSCG_Examples/images/DatabaseToWebAPI/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/DatabaseToWebAPI/ExistingCode.cs.png] code
The code below will use the RSCG DatabaseToWebAPI
[image: http://ignatandrei.github.io/RSCG_Examples/images/DatabaseToWebAPI/Usage.cs.png] code
The code that is generated by RSCG DatabaseToWebAPI
[image: http://ignatandrei.github.io/RSCG_Examples/images/DatabaseToWebAPI/GeneratedCode.cs.png] code
More details about RSCG DatabaseToWebAPI
The author of RSCG DatabaseToWebAPI is Andrei Ignat
You cand find RSCG DatabaseToWebAPI at Nuget.org : https://www.nuget.org/packages/QueryGenerator/ and the sources at https://github.com/ignatandrei/QueryViewer/
For more usage features please read : http://msprogrammer.serviciipeweb.ro/category/roslyn/
Link to Example Code:

RSCG number 19 : SourceInject
What RSCG SourceInject can do
Auto register services in startup
Example code
Here is the csproj with the references for RSCG SourceInject
[image: http://ignatandrei.github.io/RSCG_Examples/images/SourceInject/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/SourceInject/ExistingCode.cs.png] code
The code below will use the RSCG SourceInject
[image: http://ignatandrei.github.io/RSCG_Examples/images/SourceInject/Usage.cs.png] code
The code that is generated by RSCG SourceInject
[image: http://ignatandrei.github.io/RSCG_Examples/images/SourceInject/GeneratedCode.cs.png] code
More details about RSCG SourceInject
The author of RSCG SourceInject is Giovanni Bassi
You cand find RSCG SourceInject at Nuget.org : https://www.nuget.org/packages/SourceInject/ and the sources at https://github.com/giggio/sourceinject
For more usage features please read : https://github.com/giggio/sourceinject
Link to Example Code:

RSCG number 21 : BaseTypes
What RSCG BaseTypes can do
Generated tiny types from any value type
Example code
Here is the csproj with the references for RSCG BaseTypes
[image: http://ignatandrei.github.io/RSCG_Examples/images/BaseTypes/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/BaseTypes/ExistingCode.cs.png] code
The code below will use the RSCG BaseTypes
[image: http://ignatandrei.github.io/RSCG_Examples/images/BaseTypes/Usage.cs.png] code
The code that is generated by RSCG BaseTypes
[image: http://ignatandrei.github.io/RSCG_Examples/images/BaseTypes/GeneratedCode.cs.png] code
More details about RSCG BaseTypes
The author of RSCG BaseTypes is Andreas Dorfer
You cand find RSCG BaseTypes at Nuget.org : https://www.nuget.org/packages/AndreasDorfer.BaseTypes/ and the sources at https://github.com/Andreas-Dorfer/base-types
For more usage features please read : https://github.com/Andreas-Dorfer/base-types
Link to Example Code:

RSCG number 22 : AppSettingsEditor
What RSCG AppSettingsEditor can do
This will generate classes code from appsettings . Additionally , it generates API controller for editing and an UI interface
Example code
Here is the csproj with the references for RSCG AppSettingsEditor
[image: http://ignatandrei.github.io/RSCG_Examples/images/AppSettingsEditor/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/AppSettingsEditor/ExistingCode.cs.png] code
The code below will use the RSCG AppSettingsEditor
[image: http://ignatandrei.github.io/RSCG_Examples/images/AppSettingsEditor/Usage.cs.png] code
The code that is generated by RSCG AppSettingsEditor
[image: http://ignatandrei.github.io/RSCG_Examples/images/AppSettingsEditor/GeneratedCode.cs.png] code
More details about RSCG AppSettingsEditor
The author of RSCG AppSettingsEditor is Andrei Ignat
You cand find RSCG AppSettingsEditor at Nuget.org : https://www.nuget.org/packages/appSettingsEditor/ and the sources at https://github.com/ignatandrei/appSettingsEditor
For more usage features please read : http://msprogrammer.serviciipeweb.ro/category/roslyn/
Link to Example Code:

RSCG number 23 : ApparatusAOT
What RSCG ApparatusAOT can do
This will generate code for investigating at runtime the properties of an object
Example code
Here is the csproj with the references for RSCG ApparatusAOT
[image: http://ignatandrei.github.io/RSCG_Examples/images/ApparatusAOT/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/ApparatusAOT/ExistingCode.cs.png] code
The code below will use the RSCG ApparatusAOT
[image: http://ignatandrei.github.io/RSCG_Examples/images/ApparatusAOT/Usage.cs.png] code
The code that is generated by RSCG ApparatusAOT
[image: http://ignatandrei.github.io/RSCG_Examples/images/ApparatusAOT/GeneratedCode.cs.png] code
More details about RSCG ApparatusAOT
The author of RSCG ApparatusAOT is Stanislav Silin
You cand find RSCG ApparatusAOT at Nuget.org : https://www.nuget.org/packages/Apparatus.AOT.Reflection/ and the sources at https://github.com/byme8/Apparatus.AOT.Reflection
For more usage features please read : https://github.com/byme8/Apparatus.AOT.Reflection
Link to Example Code:

Author of ApparatusAOT , Stanislav Silin
Short info about you , Stanislav Silin
I am a software developer. Interested in the app architecture and performance optimizations
Why did you start this ApparatusAOT ?
I am constantly looking for ways how to reduce the amount of boilerplate code. So, I decided to make a place where I can put all my findings. Maybe they will be useful for someone else. 'Apparatus' is the name of a community/organization. The 'AOT' is just a suffix for the indication that the tool is intended for the AOT scenarios.
How do yourself use your ApparatusAOT ?
Right now, ZeroIoc is actively used in one commercial project. Other stuff like AOT.Reflection, DuckInterface in just experiments to investigate the possibility and effectiveness of such tools.
What other RSCG do you use ?
At the moment I don't use any of them.
RSCG number 24 : RSCG_TimeBombComment
What RSCG RSCG_TimeBombComment can do
This will generate an error from the comment after a certain date
Example code
Here is the csproj with the references for RSCG RSCG_TimeBombComment
[image: http://ignatandrei.github.io/RSCG_Examples/images/RSCG_TimeBombComment/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/RSCG_TimeBombComment/ExistingCode.cs.png] code
The code below will use the RSCG RSCG_TimeBombComment
[image: http://ignatandrei.github.io/RSCG_Examples/images/RSCG_TimeBombComment/Usage.cs.png] code
The code that is generated by RSCG RSCG_TimeBombComment
[image: http://ignatandrei.github.io/RSCG_Examples/images/RSCG_TimeBombComment/GeneratedCode.cs.png] code
More details about RSCG RSCG_TimeBombComment
The author of RSCG RSCG_TimeBombComment is Andrei Ignat
You cand find RSCG RSCG_TimeBombComment at Nuget.org : https://www.nuget.org/packages/RSCG_TimeBombComment/ and the sources at https://github.com/ignatandrei/RSCG_TimeBombComment
For more usage features please read : http://msprogrammer.serviciipeweb.ro/category/roslyn/
Link to Example Code:

RSCG number 25 : StructRecordsGenerator
What RSCG StructRecordsGenerator can do
This will generate code .ToString. Usefull for debugging
Example code
Here is the csproj with the references for RSCG StructRecordsGenerator
[image: http://ignatandrei.github.io/RSCG_Examples/images/StructRecordsGenerator/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/StructRecordsGenerator/ExistingCode.cs.png] code
The code below will use the RSCG StructRecordsGenerator
[image: http://ignatandrei.github.io/RSCG_Examples/images/StructRecordsGenerator/Usage.cs.png] code
The code that is generated by RSCG StructRecordsGenerator
[image: http://ignatandrei.github.io/RSCG_Examples/images/StructRecordsGenerator/GeneratedCode.cs.png] code
More details about RSCG StructRecordsGenerator
The author of RSCG StructRecordsGenerator is Sergey Teplyakov
You cand find RSCG StructRecordsGenerator at Nuget.org : https://www.nuget.org/packages/StructRecordGenerator/ and the sources at https://github.com/SergeyTeplyakov/StructRecordsGenerator
For more usage features please read : https://github.com/SergeyTeplyakov/StructRecordsGenerator
Link to Example Code:

RSCG number 26 : AOPMarkerCI
What RSCG AOPMarkerCI can do
This will tracing methods marked with AOPMarkerMethod in CI builds. Does not affect the code run by the programmer.
Example code
Here is the csproj with the references for RSCG AOPMarkerCI
[image: http://ignatandrei.github.io/RSCG_Examples/images/AOPMarkerCI/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/AOPMarkerCI/ExistingCode.cs.png] code
The code below will use the RSCG AOPMarkerCI
[image: http://ignatandrei.github.io/RSCG_Examples/images/AOPMarkerCI/Usage.cs.png] code
The code that is generated by RSCG AOPMarkerCI
[image: http://ignatandrei.github.io/RSCG_Examples/images/AOPMarkerCI/GeneratedCode.cs.png] code
More details about RSCG AOPMarkerCI
The author of RSCG AOPMarkerCI is Andrei Ignat
You cand find RSCG AOPMarkerCI at Nuget.org : https://www.nuget.org/packages/AOPMethodsCommon/ https://www.nuget.org/packages/AOPMethodsGenerator/ and the sources at http://github.com/ignatandrei/aop_With_Roslyn/
For more usage features please read : http://msprogrammer.serviciipeweb.ro/category/roslyn/
Link to Example Code:

RSCG number 27 : BoilerplateFree
What RSCG BoilerplateFree can do
This will generate interface from a class
Example code
Here is the csproj with the references for RSCG BoilerplateFree
[image: http://ignatandrei.github.io/RSCG_Examples/images/BoilerplateFree/The.csproj.png] code
The initial code that you start with is
[image: http://ignatandrei.github.io/RSCG_Examples/images/BoilerplateFree/ExistingCode.cs.png] code
The code below will use the RSCG BoilerplateFree
[image: http://ignatandrei.github.io/RSCG_Examples/images/BoilerplateFree/Usage.cs.png] code
The code that is generated by RSCG BoilerplateFree
[image: http://ignatandrei.github.io/RSCG_Examples/images/BoilerplateFree/GeneratedCode.cs.png] code
More details about RSCG BoilerplateFree
The author of RSCG BoilerplateFree is Gustav Wengel
You cand find RSCG BoilerplateFree at Nuget.org : https://www.nuget.org/packages/boilerplatefree and the sources at https://github.com/GeeWee/boilerplatefree
For more usage features please read : https://github.com/GeeWee/boilerplatefree
Link to Example Code:

Author of BoilerplateFree , Gustav Wengel
Short info about you , Gustav Wengel
I'm a 28 year old software developer from Aarhus, Denmark. I work primarily within CleanTech as I think the climate emergency is one of the most pressing issues we face currently. I've worked with C# and .NET for about two years.
Why did you start this BoilerplateFree ?
Because I thought some of the limitations that the C# language offers sucked. I saw things like Project Lombok in the Java space that made the language much more ergonomic, and I wanted to see if I could bring some of that stuff into the C# space.
How do yourself use your BoilerplateFree ?
I use it for a few small-scale production projects. I think the jury is still out whether or not using source generators this way is a good idea or not, but so far it's been a real positive experience.
What other RSCG do you use ?
None yet.
Any other feedback ?
Nope!
Roslyn Source Code Generator (RSCG) - others
There are more awesome RSCG that you could use - here is a list of 53 RSCG that you may want to look at:
Conclusion
I am happy that you have read / or practice / the RSCG presented in this book. I hope that inspired you to produce yours - and send me to review and maybe add to this book .
One hour of free consultancy
If you bought this book from Amazon, https://amzn.to/3f6gll3, you are entitled to have 1 hour free of consultancy with me.
Thanks ! Andrei
rId116.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.1l</TargetFramework>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="AOPMethodsCommon" Version="2021.1.23.1000" />
<PackageReference Include="AOPMethodsGenerator" Version="2021.1.23.1000" />
</ItemGroup>
<ItemGroup>
<AdditionalFiles Include="CopyConstructorDestructor.txt" />
</ItemGroup>

</Project>

rId119.png
//ExistingCode
//https://github.com/ignatandrei/RSCG_Examples
[(=
"CopyConstructorDestructor.txt")]

partial class Person

{

public string { get; set; }
public string { get; set; }
}//RSCG

rId122.png
//Usage
//https://qgithub.com/ignatandrei/RSCG_Examples
var pOldPerson = new ();
= "Andrei";
o = "Ignat";
var newPerson = new (
(

var (,‘)

); //RSCG

rId125.png
//GeneratedCode
//https://github.com/ignatandrei/RSCG_Examples
public (O){
();
}
public):base(){
()3
)8
0

¥

public void

this.
this.

public void (out string , out string

{

}//RSCG

rId134.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.l</TargetFramework>
<EmitCompilerGeneratedFiles>true</EmitCompilerGeneratedFiles>

<CompilerGeneratedFilesOutputPath>$(BaseIntermediateOutputPath)Generated</CompilerGeneratedFilesOutputP
ath>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="GeneratedMapper" Version="2.1.0" />
</ItemGroup>

</Project>

rId137.png
//ExistingCode
//https://github. com/ignatandrei/RSCG_Examples
public class Department

{
public int { get; set; }
public string { get; set; }

public <string> { get; set; }
}

[("Employees")]

[(typeof()]
public class DepartmentDTO

{

public int { get; set; }
public string {get; set;}

[("Employees", typeof(
public int { get; set; }

;ublic class ResolverLength

! public int (<string>
¢ return ((?.) 727 0);

}//R£CG

rId140.png
//Usage
//https://github. com/ignatandrei/RSCG_Examples
static void (string[])
{
var dep = new ();
"I

= 1;

= new <string>();
. ("Andrei");
var dto = . ()3
(. +1 =>4
}//RSCG

rId143.png
//GeneratedCode
//https://github.com/ignatandrei/RSCG_Examples
namespace DTOMapper

public static partial class DepartmentMapToExtensions

{
public static
{
if (is
{
throw new), "DTOMapper.Department ->
DTOMapper .DepartmentDTO: Source is null.");

}

var resolverLength = new

var target = new

{

?? throw new
("DTOMapper.Department -> DTOMapper.DepartmentDTO:

Property Name is null.")),

= . ((. ?? throw new
("DTOMapper.Department -> DTOMapper.DepartmentDTO:

Property Employees is null."))),
b8

return

}

}
//RSCG

rId161.png
[
<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>
<TargetFramework>net5.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Swashbuckle.AspNetCore" Version="5.6.3" />
<PackageReference Include="SkinnyControllersCommon" Version="2021.1.9.2000" />
<PackageReference Include="SkinnyControllersGenerator" Version="2021.1.9.2000" />

</ItemGroup>

</Project>

rId164.png
//ExistingCode
//https://github. com/ignatandrei/RSCG_Examples
public class PersonRepository
{
public async Task< > (int
{
await Task. (1000);
return new ()

{

>

= "Andrei " +

b

¥

//add more functions here to make the demo
}//RSCG

rId167.png
//Usage
//https://github.com/ignatandrei/RSCG_Examples
(= . = new[] { "x" },
new[] { "_logger" })]

1
("[controller]/[action]")]

ublic partial class PersonController :

private readonly
private readonly

public

{
this.

}

}//RSCG

rId170.png
//GeneratedCode
//https://github.com/ignatandrei/RSCG_Examples
[|

public . . .Task<

return

(

}//RSCG

rId181.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.1l</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="DasMulli.DataBuilderGenerator" Version="2.0.0" />
</ItemGroup>

</Project>

rId184.png
//ExistingCode
//https://github. com/ignatandrei/RSCG_Examples
[1

public class Person

{

public string { get; set; }
public string? { get; set; }
public string { get; set; }

}//RSCG

rId187.png
//Usage
//https://qgithub.com/ignatandrei/RSCG_Examples
var pOld = new ()3

= "Andrei";
= "Ignat";
o = "G";
var build = new Do o ("Florin");
var pNew = . ();
);//RSCG

rId190.png
//GeneratedCode
//https://github.com/ignatandrei/RSCG_Examples
public partial class PersonBuilder
{
private string? _firstName;
private string? _middleNames;
private string? _lastName;
public PersonBuilder()
{
}

public PersonBuilder(PersonBuilder otherBuilder)
{
_firstName = otherBuilder._firstName;
_middleNames = otherBuilder._middleNames;
_lastName = otherBuilder._lastName;

}

public PersonBuilder(Person existingInstance)

{
_firstName = existingInstance.FirstName;
_middleNames = existingInstance.MiddleNames;
_lastName = existingInstance.LastName;

}

public PersonBuilder WithFirstName(string firstName)
{
var mutatedBuilder = new PersonBuilder(this);
mutatedBuilder._firstName = firstName;
return mutatedBuilder;

}

public PersonBuilder WithMiddleNames(string? middleNames)
{
var mutatedBuilder = new PersonBuilder(this);
mutatedBuilder._middleNames = middleNames;
return mutatedBuilder;

}

public PersonBuilder WithoutMiddleNames()

{
var mutatedBuilder = new PersonBuilder(this);
mutatedBuilder._middleNames = null;
return mutatedBuilder;

}

public PersonBuilder WithLastName(string lastName)

{

var mutatedBuilder = new PersonBuilder(this);
mutatedBuilder._lastName = lastName;
return mutatedBuilder;

}

public Person Build()
{
var instance = new Person();
if (!Y(_firstName is null))
instance.FirstName = _firstName;
if (!(_middleNames is null))
instance.MiddleNames = _middleNames;
if (!(_lastName is null))
instance.LastName = _lastName;
return instance;

}//RSCG

rId208.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.1l</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="AOPMethodsCommon" Version="2021.1.23.1000" />
<PackageReference Include="AOPMethodsGenerator" Version="2021.1.23.1000" />
</ItemGroup>
<ItemGroup>
<AdditionalFiles Include="GenerateFromPOCO.txt" />
</ItemGroup>

</Project>

rId211.png
//ExistingCode
//https://github.com/ignatandrei/RSCG_Examples
[(=
"GenerateFromP0CO.txt")]

public partial class Person

{

public string { get; set; }
public string { get; set; }
}//RSCG

rId214.png
//Usage
//https://github. com/ignatandrei/RSCG_Examples
var p = new ()3
= "Andrei";
o = "Ignat";
var last = p. (
var first = p. ("FirstName");

+ "M+)3 //RSCG

rId217.png
//GeneratedCode

//https://qgithub.com/ignatandrei/RSCG_Examples

public enum

// Public
s // Public

}

partial class Person{

public object
if(==
return
}
if(==
return
}
throw new
+
public object
if(string.
return
}
if(string.
return
}
throw new

}
}//RSCG

this.

{

) 4

) 1

5
("cannot find "+

(string o
("FirstName", s

>

("LastName",

5>

("cannot find "+

)3

)3

rId226.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>netcoreapp3.1l</TargetFramework>

<IsPackable>false</IsPackable>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.5.0" />
<PackageReference Include="MockSourceGenerator" Version="0.3.0" />
<PackageReference Include="MSTest.TestAdapter" Version="2.1.0" />
<PackageReference Include="MSTest.TestFramework" Version="2.1.0" />
<PackageReference Include="coverlet.collector" Version="1.2.0" />
</ItemGroup>

<ItemGroup>
<ProjectReference Include="..\MatOps\MatOps.csproj" />
</ItemGroup>

</Project>

rId229.png
//ExistingCode
//https://qgithub.com/ignatandrei/RSCG_Examples
public interface IMatOps
{

public int (int a, int b);

public int (int a, int b);
}//RSCG

rId232.png
//Usage

//https://github.com/ignatandrei/RSCG_Examples
var mock = (IMatOps)new MatOpsMock

{
MockAdd = (a, b) => a+b,
MockDivision = (a,b)=> a/b
};//RSCG

rId235.png
//GeneratedCode
//https://github.com/ignatandrei/RSCG_Examples
public partial class MatOpsMock : global::MatOps.IMatOps

{
/// <summary>
/// Set this to true, if you want members that don't have a mock implementation
/// to return a default value instead of throwing an exception.
/// </summary>
public bool ReturnDefaultIfNotMocked { get; set; }

private System.Collections.Generic.List<HistoryEntry> historyEntries = new
System.Collections.Generic.List<HistoryEntry>();

public System.Collections.ObjectModel.ReadOnlyCollection<HistoryEntry> HistoryEntries
{

get

{

return historyEntries.AsReadOnly();
}

/// <summary>
/// Implemented for type global::MatOps.IMatOps (Public, same assembly: False)
/// </summary>
public Func<int,int,int>? MockAdd { get; set; }
public int Add(int a, int b)
{
historyEntries.Add(new HistoryEntry("Add", new [] { $"{a}", $"{b}" }));

if (MockAdd == null)
{
if (ReturnDefaultIfNotMocked)
{
return default(int);
}
else
{
throw new NotImplementedException("Method 'MockAdd' was called, but no mock
implementation was provided");
}
}

return MockAdd(a, b);
+

/// <summary>

/// Implemented for type global::MatOps.IMatOps (Public, same assembly: False)
/// </summary>

public Func<int,int,int>? MockDivision { get; set; }

public int Division(int a, int b)

{

historyEntries.Add(new HistoryEntry("Division", new [] { $"{a}", $"{b}" }));

if (MockDivision == null)
{
if (ReturnDefaultIfNotMocked)
{
return default(int);
}
else
{
throw new NotImplementedException("Method 'MockDivision' was called, but no mock
implementation was provided");
}
}

return MockDivision(a, b);

}
}//RSCG

rId252.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.l</TargetFramework>
<EmitCompilerGeneratedFiles>true</EmitCompilerGeneratedFiles>

<CompilerGeneratedFilesOutputPath>$(BaseIntermediateOutputPath)Generated</CompilerGeneratedFilesOutputP
ath>

</PropertyGroup>

<ItemGroup>
<PackageReference Include="AOPMethodsCommon" Version="2021.2.22.1941" />
<PackageReference Include="AOPMethodsGenerator" Version="2021.2.22.1941" />
</ItemGroup>
<ItemGroup>
<AdditionalFiles Include="MethodDecorator.txt" />
</ItemGroup>

</Project>

rId255.png
//ExistingCode
//https://github.com/ignatandrei/RSCG_Examples
[(= .
="MethodDecorator.txt")]

public partial class Person

{

public string { get; set; }
public string { get; set; }

private string
{

return

}
}//RSCG

rId258.png
//Usage
//https://github.com/ignatandrei/RSCG_Examples

var = new Person();

p.FirstName = "Andrei";

p.LastName = "Ignat";
Console.WriteLine(p.FullName());//RSCG

rId261.png
//GeneratedCode
//https://github.com/ignatandrei/RSCG_Examples
[("AOPMethods", "2021.2.22.1125")]

[]

public partial class Person{

public string

— umn
E]
— umn

= 0){

()3

("--prvFullName start ");
("called from class :"+
("called from file :"+
("called from line :"+
()3
+
catch({

("error in prvFullName:" +
throw;

+
finally{

prvFullName end in {sw.Elapsed.TotalMilliseconds}");
¥

}//end FullName

}//RSCG

rId270.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="PartiallyApplied" Version="1.0.0" />
</ItemGroup>

</Project>

rId273.png
//ExistingCode
//https://qgithub.com/ignatandrei/RSCG_Examples
public class Accounting
{

public static float (float

{

var val= * (1- b5
return

}
}//RSCG

rId276.png
//Usage

//https://github. com/ignatandrei/RSCG_Examples
var disclOPercent = Partially.Apply(Accounting.Discount,
U42861¢.WriteLine(disclOPercent(disclOPercent(100)));//RSCG

rId279.png
//GeneratedCode
//https://github. com/ignatandrei/RSCG_Examples

public static partial class Partially
{

public static Func<float, float> (Func<float, float, float>
= new(() == (5))s
}//RSCG

rId290.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.1l</TargetFramework>

</PropertyGroup>

<ItemGroup>
<PackageReference Include="AOPMethodsCommon" Version="2021.2.27.640" />
<PackageReference Include="AOPMethodsGenerator" Version="2021.2.27.640" />
<AdditionalFiles Include="CreateFormattable.txt"></AdditionalFiles>

</ItemGroup>

</Project>

rId293.png
//ExistingCode

//https://github.com/ignatandrei/RSCG_Examples

[(= "CreateFormattable.txt",

.)1

partial class Department

{
public int { get; set; }
public string { get; set; }

}
[(= "CreateFormattable.txt",

)]

partial class Employee

{

public int { get; set; }
public string { get; set; }

public { get; set; }

}//RSCG

rId296.png
//Usage
//https://github.com/ignatandrei/RSCG_Examples
var e = new ();

= 1;

"Andrei";
= new ()3
=TT,

. (e. ("for employee with id
{dep?.Name}",));

. (e. ("for employee with id
{dep?.Name}",));
//RSCG

{id} the name is {name} and department is

{id} the name is {name} and department is

rId299.png
//GeneratedCode
//https://github. com/ignatandrei/RSCG_Examples
[GeneratedCode("AOPMethods", "2021.2.27.640")]
[DebuggerDisplay(" ID = {ID} Name = {Name} dep = {dep}")]
partial class Employee: IFormattable{
public object ValueProperty(string val){
val = val.Replace("?","");
if(string.Compare("ID",val,StringComparison.CurrentCultureIgnoreCase)==0) {
return this.ID;
}

if(string.Compare("Name",val,StringComparison.CurrentCultureIgnoreCase)==0) {
return this.Name;

}

if(string.Compare("dep",val,StringComparison.CurrentCultureIgnoreCase)==0) {
return this.dep;

}

throw new ArgumentException("cannot find "+ val);

}

//adapted from https://haacked.com/archive/2009/01/14/named-formats-redux.aspx/
private object Eval(string expression,IFormatProvider formatProvider)
{
if (expression.Contains("."))
{
var splut = expression.Split(".");
bool canBeNull=splut[@].Contains("?");
dynamic d = ValueProperty(splut[0]);
if(canBeNull && d == null)
return null;
for(var i=1; i<splut.Length;i++){
canBeNull=splut[i].Contains("?");
d=d.ToString("{"+splut[i]+"}",formatProvider);
if(canBeNull && d == null)
return null;
}

return d;
}

return ValueProperty(expression);

public string ToString(string format, IFormatProvider formatProvider)

{
if (format == null)
throw new ArgumentNullException("format");

List<object> values = new List<object>();
string rewrittenFormat = Regex.Replace(format,
delegate (Match m)
{
Group startGroup = m.Groups["start"];
Group propertyGroup = m.Groups["property"];
Group formatGroup = m.Groups["format"];
Group endGroup = m.Groups["end"];

values.Add((propertyGroup.Value == "0")
? this

: Eval(propertyGroup.Value, formatProvider));

int openings = startGroup.Captures.Count;
int closings = endGroup.Captures.Count;

return openings > closings || openings % 2 ==
? m.Value
: new string('{', openings) + (values.Count - 1)
+ formatGroup.Value
+ new string('}', closings);
}’
RegexOptions.Compiled
| RegexOptions.CultureInvariant
| RegexOptions.IgnoreCase);

return string.Format(formatProvider, rewrittenFormat, values.ToArray());

}

}//RSCG

rId30.jpg

rId308.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.1l</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="BeaKona.AutoInterfaceGenerator" Version="1.0.10" />
</ItemGroup>

</Project>

rId311.png
//ExistingCode
//https://github.com/ignatandrei/RSCG_Examples
public interface ICoffee

{

public int Price { get; }

public string Description { get; }
}

public class SimpleCoffee : ICoffee
{
public SimpleCoffee()
{
Price = 3;
Description = "Simple Coffee";
}
public int Price { get; set; }
public string Description { get; set; }

public partial class MilkDecorator : ICoffee
{

[BeaKona.AutoInterface(TemplateLanguage = "scriban", TemplateBody =
SimpleCoffee.TemplateCoffeeDecorator)]

private readonly ICoffee coffee;

public int DecoratorPrice { get; set; }
public MilkDecorator(ICoffee coffee)
{

this.coffee = coffee;

}

3

public partial class ChocoDecorator : ICoffee

{

[BeaKona.AutoInterface(TemplateLanguage = "scriban", TemplateBody =
SimpleCoffee.TemplateCoffeeDecorator)]
private readonly ICoffee coffee;

public int DecoratorPrice { get; set; }
public ChocoDecorator(ICoffee coffee)
{

this.coffee = coffee;

}

¥
//RSCG

rId314.png
//Usage

//https://github. com/ignatandrei/RSCG_Examples
= new ()3

(s. +" with Price "+ s.)3

= (s);
(. } +" with Price "+
()8
(. +" with Price "+);//RSCG

rId317.png
//GeneratedCode
//https://github. com/ignatandrei/RSCG_Examples
partial class MilkDecorator
{
int
{
get
{

return ((

var name = this. (). . ("Decorator","")
return (()this. . + " with " +

}
}//RsCG

rId334.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0</TargetFramework>

</PropertyGroup>

<ItemGroup>
<PackageReference Include="AOPMethodsCommon" Version="2021.2.27.640" />
<PackageReference Include="AOPMethodsGenerator" Version="2021.2.27.640" />
<PackageReference Include="Microsoft.EntityFrameworkCore.InMemory" Version="5.0.3" />
<AdditionalFiles Include="CreateMetadata.txt"></AdditionalFiles>

</ItemGroup>

</Project>

rId337.png
//ExistingCode
//https://github.com/ignatandrei/RSCG_Examples
[(= .
"CreateMetadata.txt")]

public partial class Person

{

public int { get; set; }

public string { get; set; }

public string { get; set; }

public DateTime? {get;set;}
}//RSCG

rId340.png
//Usage

//https://qgithub. com/ignatandrei/RSCG_Examples

var queryCnt = . ("9");
var pers= awalt . . (). ()

)5

queryID =
pId = await

nullBirthDateQuery
birthNull = await

H

("10",
Do
)s

("DateOfBirth",
Do
)5

rId343.png
//GeneratedCode
//https://github.com/ignatandrei/RSCG_Examples
[CompilerGenerated]

public partial class Metadata_Person{

//public const string prop_ID = "ID";

//public static readonly Func<Person, int> func_ID = (it=>it.ID);

//public static readonly Expression<Func<Person, int>> expr_ID = (it=>it.ID);

public static Expression<Func<Person,bool>> expr_ID_Equal(int value)=> (it=>1t.ID == value);

public static Expression<Func<Person,bool>> expr_ID_Diff(int value)=> (it=>1t.ID != value);

public static Expression<Func<Person,bool>> expr_ID_Contains(params int[] value)=> (it=>
value.Contains(it.ID));

//int

public static Expression<Func<Person,bool>> expr_ID_Greater(int value)=> (it=>1t.ID > value);

public static Expression<Func<Person,bool>> expr_ID_GreaterOrEqual(int value)=> (it=>1t.ID >=
value);

public static Expression<Func<Person,bool>> expr_ID_Less(int value)=> (it=>1t.ID < value);

public static Expression<Func<Person,bool>> expr_ID_LessOrEqual(int value)=> (it=>1t.ID <= value);

//public const string prop_FirstName = "FirstName";

//public static readonly Func<Person,string> func_FirstName = (it=>it.FirstName);

//public static readonly Expression<Func<Person,string>> expr_FirstName = (it=>it.FirstName);

public static Expression<Func<Person,bool>> expr_FirstName_Equal(string value)=> (it=>it.FirstName
== value);

public static Expression<Func<Person,bool>> expr_FirstName_Diff(string value)=> (it=>it.FirstName
!= value);

public static Expression<Func<Person,bool>> expr_FirstName_Contains(params string[] value)=> (it=>
value.Contains(it.FirstName));

//string

public static Expression<Func<Person,bool>> expr_FirstName_Null()=> (it=>it.FirstName == null);

public static Expression<Func<Person,bool>> expr_FirstName_NullOrWhite()=>
(it=>string.IsNullOrWhiteSpace(it.FirstName));

public static Expression<Func<Person,bool>> expr_FirstName_Ends(string value)=>
(it=>1t.FirstName.StartsWith (value));

public static Expression<Func<Person,bool>> expr_FirstName_Starts(string value)=>
(it=>1t.FirstName.EndsWith(value));

public static Expression<Func<Person,bool>> expr_FirstName_Contains(string value)=>
(it=>1t.FirstName.Contains(value));

//public const string prop_LastName = "LastName";

//public static readonly Func<Person,string> func_LastName = (it=>it.LastName);

//public static readonly Expression<Func<Person,string>> expr_LastName = (it=>it.LastName);

public static Expression<Func<Person,bool>> expr_LastName_Equal(string value)=> (it=>it.LastName ==
value);

public static Expression<Func<Person,bool>> expr_LastName_Diff(string value)=> (it=>it.LastName !=
value);

public static Expression<Func<Person,bool>> expr_LastName_Contains(params string[] value)=> (it=>
value.Contains(it.LastName));

//string

public static Expression<Func<Person,bool>> expr_LastName_Null()=> (it=>it.LastName == null);

public static Expression<Func<Person,bool>> expr_LastName_NullOrWhite()=>
(it=>string.IsNullOrWhiteSpace(it.LastName));

public static Expression<Func<Person,bool>> expr_LastName_Ends(string value)=>
(it=>1t.LastName.StartsWith (value));

public static Expression<Func<Person,bool>> expr_LastName_Starts(string value)=>
(it=>1t.LastName.EndsWith(value));

public static Expression<Func<Person,bool>> expr_LastName_Contains(string value)=>
(it=>1t.LastName.Contains(value));

//public const string prop_DateOfBirth = "DateOfBirth";

//public static readonly Func<Person,System.DateTime?> func_DateOfBirth = (it=>it.DateOfBirth);

//public static readonly Expression<Func<Person,System.DateTime?>> expr_DateOfBirth =
(it=>it.DateOfBirth);

public static Expression<Func<Person,bool>> expr_DateOfBirth_Equal(System.DateTime? value)=>
(it=>1t.Date0OfBirth == value);

public static Expression<Func<Person,bool>> expr_DateOfBirth_Diff(System.DateTime? value)=>
(it=>1t.Date0OfBirth != value);

public static Expression<Func<Person,bool>> expr_DateOfBirth_Contains(params System.DateTime?[]
value)=> (it=> value.Contains(it.Date0OfBirth));

//System.DateTime?

public static Expression<Func<Person,bool>> expr_DateOfBirth_Null()=> (it=>1t.Date0OfBirth == null);

public static Expression<Func<Person,bool>> expr_DateOfBirth_Greater(System.DateTime? value)=>
(it=>1t.Date0OfBirth > value);

public static Expression<Func<Person,bool>> expr_DateOfBirth_GreaterOrEqual(System.DateTime?
value)=> (it=>1t.DateOfBirth >= value);

public static Expression<Func<Person,bool>> expr_DateOfBirth_Less(System.DateTime? value)=>
(it=>1t.Date0fBirth < value);

public static Expression<Func<Person,bool>> expr_DateOfBirth_LessOrEqual(System.DateTime? value)=>
(it=>1t.Date0OfBirth <= value);

public static Expression<Func<Person,bool>> FindEx(string nameProp, SearchCriteria search, object
value = null)

{

if(string.Compare("ID",nameProp,StringComparison.CurrentCultureIgnoreCase) == 0)
switch(search){
case SearchCriteria.None:
return null;

case SearchCriteria.Equal:
var orig= (int) value;
return expr_ID_Equal(orig);
default:
throw new ArgumentException("cannot find for ID case "+search);

if(string.Compare("FirstName",nameProp,StringComparison.CurrentCultureIgnoreCase) == 0)
switch(search){
case SearchCriteria.None:
return null;

case SearchCriteria.FindNull:
return expr_FirstName_Null();

case SearchCriteria.Equal:
var orig= (string) value;
return expr_FirstName_Equal(orig);
default:
throw new ArgumentException("cannot find for FirstName case "+search);

if(string.Compare("LastName",nameProp,StringComparison.CurrentCultureIgnoreCase) == 0)
switch(search){
case SearchCriteria.None:
return null;

case SearchCriteria.FindNull:
return expr_LastName_Null();

case SearchCriteria.Equal:
var orig= (string) value;
return expr_LastName_Equal(orig);
default:
throw new ArgumentException("cannot find for LastName case "+search);

if(string.Compare("DateOfBirth",nameProp,StringComparison.CurrentCultureIgnoreCase) == 0)
switch(search){
case SearchCriteria.None:
return null;

case SearchCriteria.FindNull:
return expr_DateOfBirth_Null();

case SearchCriteria.Equal:
var orig= (System.DateTime?) value;
return expr_DateOfBirth_Equal(orig);
default:
throw new ArgumentException("cannot find for DateOfBirth case "+search);

throw new ArgumentException("cannot find property "+nameProp);

}

}//RSCG

rId352.png
="Microsoft.NET.Sdk"

="Transplator"
="Analyzer"
all

runtime; build; native; contentfiles; analyzers; buildtransitive

="DebugTransplator"
="AdditionalFiles" ="SourceItemType"
="AdditionalFiles" ="Name"
="employee. txt" ="Transplate"
="Name"

rId355.png
//ExistingCode
//https://github.com/ignatandrei/RSCG_Examples
{%

using

using

using

using ;

static partial class EmployeeRendering
{

public static string (params

(Ds

8 %}
{%~ foreach (var emp in) {

%}
{% 1 %}. {% . %} is in {%
%t {%~ } ~%}
{%
return . ()3

void (string value) => . (value);
void (object value) => . (value);

}
}
%}//RSCG

rId358.png
//Usage
//https://qgithub.com/ignatandrei/RSCG_Examples
var IT = new ()3
= =TT
var e = ne ();
= 10;
= "Andrei Ignat";

bl

var render =

()3 //RSCG

rId361.png
//GeneratedCode
//https://qgithub.com/ignatandrei/RSCG_Examples
using . . ;

using

using .

using ;

5>

static partial class EmployeeRendering
{
public static string (params
{
var sb = new ();
int i= 0;
(@"Number Employees: ");
(Bo)3
(@"
“Dg
foreach (var emp in) {
++;
(@")8
(1);
(@. ");
(emp.)5
(@ it is in ");
(. ?.

(@"

return sh. ();

void (string value) => . (value);
void (object value) => . (value);
+
}//RSCG

rId373.png
<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>
<TargetFramework>net5.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Swashbuckle.AspNetCore" Version="5.6.3" />
</ItemGroup>

<ItemGroup>
<ProjectReference Include="..\AMSExample\AMSExample.csproj" />

</ItemGroup>
<ItemGroup>
<PackageReference Include="AMS_Base" Version="2021.7.6.628" />
<PackageReference Include="AMSWebAPI" Version="2021.7.6.628" />
<PackageReference Include="RSCG_AMS" Version="2021.7.6.628" ReferenceQutputAssembly="false"
OutputItemType="Analyzer" />
</ItemGroup>
</Project>

rId376.png
//ExistingCode
//https://github.com/ignatandrei/RSCG_Examples

="AMS_Base" />

="AMSWebAPI" />

="RSCG_AMS" ="Analyzer"
/>//RSCG

rId379.png
//Usage

//https://github.com/ignatandrei/RSCG_Examples
app.UseEndpoints(endpoints =>

{

endpoints.MapControllers();
endpoints.UseAMS();
})s//RSCG

rId382.png
//GeneratedCode
//https://github.com/ignatandrei/RSCG_Examples
using ;
using ;
namespace AMSExample {
/// <summary>
/// this is the About My Software for 65788572124102115119116110
/// </summary>
public class XAboutMySoftware_65788572124102115119116110 :
/// <summary>
/// starts when this module is loaded and
/// add the AMS tot the
/// </summary>
[o .
public static void
("AMSExample",new
));
}
/// <summary>
/// constructor
/// for AMS 65788572124102115119116110
/// </summary>
public ()4
="AMSExample" ;
= DateTime. ("20210717034910", "yyyyMMddHHmmss",)3
= "not in a CI run" ;
="https://ignatandrei.github.10/RSCG_AMS/runtimeMessages/NotFound.md" ;
= "not in a CI run" ;

= "https://ignatandrei.github.10/RSCG_AMS/runtimeMessages/NotFound.md" ;
=

3
"Surfacel";

}

}//RSCG

rId395.png
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0</TargetFramework>

</PropertyGroup>

<ItemGroup>
<PackageReference Include="HttpClientGenerator" Version="0.5.3" />
<PackageReference Include="Microsoft.Extensions.Http" Version="5.0.0" />

</ItemGroup>

<ItemGroup>
<ProjectReference Include="..\BL\BL.csproj" />

</ItemGroup>

</Project>

rId398.png
//ExistingCode
//https://github.com/ignatandrei/RSCG_Examples
public partial class WeatherService
{

[(

/{id}

)]

public partial Task<

[(

)]
public partial Task<
}//R5CG

rId401.png
//Usage
//https://qgithub.com/ignatandrei/RSCG_Examples
using (var client = new ()

{

://localhost:5000
)8
var userService = new
var w = await
o (
o }
)8

var q = await

{q[0]. ¥
);
}//RSCG

rId404.png
//GeneratedCode
//https://github.com/ignatandrei/RSCG_Examples
public partial async . . .Task<BL. > GetWeather(1int

{
const string @___httpMethod =

var @___path =
/{id}

var @___routes = new <string, object>();
@___routes|[

H

var @___queryParams = new <string, object>();
// Query String dictionary goes here...

var @___headers = new <string, string>();
// Header dictionary goes here...

return awatit . . .
@___httpMethod, @___path, @___headers, @___routes, @___queryParams);
}//RSCG

rId416.png
[XN J
<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>
<TargetFramework>net5.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer" Version="5.0.9" />
<PackageReference Include="QueryGenerator" Version="2021.8.13.2126" />
<PackageReference Include="Swashbuckle.AspNetCore" Version="6.1.5" />

</ItemGroup>

<ItemGroup>

<CompilerVisibleItemMetadata Include="AdditionalFiles" MetadataName="generateQuery"
<AdditionalFiles Include="queries.json" generateQuery="true">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</AdditionalFiles>
</ItemGroup>

<ItemGroup>
<AdditionalFiles Include="templates\Controller.txt">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</AdditionalFiles>
<AdditionalFiles Include="templates\SearchClasses.txt">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</AdditionalFiles>
<AdditionalFiles Include="templates\Extensions.txt">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</AdditionalFiles>
<AdditionalFiles Include="templates\DBContextTemplate.txt">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</AdditionalFiles>
</ItemGroup>

<ItemGroup>
<None Include="wwwroot\data-table.7eda0®c04830dac128c76.svg" />
<None Include="wwwroot\main.4dcec7eae24205ed82af.js" />
<None Include="wwwroot\polyfills.67b993cc144b2da69bb8.js" />
<None Include="wwwroot\runtime.0e49e2b53282f40c8925.js" />

</ItemGroup>

<PropertyGroup>

<EmitCompilerGeneratedFiles>true</EmitCompilerGeneratedFiles>

<CompilerGeneratedFilesOutputPath>$(BaseIntermediateOutputPath)Generated</CompilerGeneratedFilesOutputP
ath>

</PropertyGroup>
</Project>

rId419.png
//ExistingCode
//https://github.com/ignatandrei/RSCG_Examples
//add queries. json with all the connection string and tables necessary
//add in templates folder the files to generate controllers
using ;
using . .
//T0DO : modify namespace
namespace WebFromQuery.
{
public class FieldDescription
{
public string { get; set; }
public string { get; set; }

public string { get; set; }
public string { get; set; }

public { get; set; }

}
public class DisplayData

{
public string { get; set; }
public string { get; set; }
public [1 { get; set; }
public <string, object>[] { get; set; }

}
//RSCG

rId422.png
//Usage
//https://github.com/ignatandrei/RSCG_Examples

//In Startup
services.AddFactoryGenerated();
app.UseDefaultFiles();
app.UseStaticFiles();//RSCG

rId425.png
//GeneratedCode

//https://github.com/ignatandrei/RSCG_Examples
//ApplicationDbContext : too much lines - see project

//Controllers : too much lines - see project//RSCG

rId436.png
[
<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>
<TargetFramework>net5.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Swashbuckle.AspNetCore" Version="5.6.3" />
<PackageReference Include="SourceInject" Version="0.1.10" />
</ItemGroup>

<ItemGroup>
<ProjectReference Include="..\AutoRegisterBL\AutoRegisterBL.csproj" />
</ItemGroup>

</Project>

rId439.png
//ExistingCode
//https://github.com/ignatandrei/RSCG_Examples
using . . ;
using

using

namespace AutoRegisterBL

{
[(

public class Repo
{
public async Task< >

{

awailt Task. (1000);
return new)

{

El

= " Andrei Ignat " +

b

¥
}//RSCG

rId442.png
//Usage

//https://github.com/ignatandrei/RSCG_Examples
//in startup.cs

services.DiscoverInAutoRegisterBL();//RSCG

rId445.png
//GeneratedCode

//https://github.com/ignatandrei/RSCG_Examples
// <auto-generated />
using

public static class GeneratedServicesExtension

{
public static void (this
()3

internal static void

public static class AutoRegisterBLDiscoverer

{

public static void (
}//RSCG

rId456.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>net5.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="AndreasDorfer.BaseTypes" Version="1.0.1" />
</ItemGroup>

</Project>

rId459.png
//ExistingCode

//https://github. com/ignatandrei/RSCG_Examples
[] public partial g
public GetFromId(int , int
{

return new ()

>

= "Andrei " +

}
public GetFromId(
{

return (
}//RSCG

rId462.png
//Usage

//https://github.com/ignatandrei/RSCG_Examples
e.GetFromId(10, 34);

e.GetFromId(new DepartmentId(34), new EmployeeId(10));//RSCG

rId465.png
//GeneratedCode
//https://github.
[.
int>))]
[. .
, int>))]
sealed partial
{

public

{

this.

}
public int

com/ignatandrei/RSCG_Examples
. (typeof(

(typeof(

<int>
(int value)
= value;

{ get; }

public override string () =>

public int
public int

public static
public static
}//RSCG

(object?) =>

(?) =>
o . <int>.
implicit operator int(

as
is ?
(b

) =>

(int value) => new(value);

rId47.png
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp5.0</TargetFramework>
</PropertyGroup>
<PropertyGroup>
<Version>2021.2.15.800</Version>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="ThisAssembly" Version="1.0.5" />
</ItemGroup>
</Project>

rId476.png
<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>
<TargetFramework>net5.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Swashbuckle.AspNetCore" Version="5.6.3" />

</ItemGroup>

<ItemGroup>
<PackageReference Include="appSettingsEditor" Version="2021.3.21.2300" />
<PackageReference Include="appSettingsEditorAPI" Version="2021.3.21.2300" />
<CompilerVisibleItemMetadata Include="AdditionalFiles" MetadataName="generateAPI" />
<AdditionalFiles Include="appsettings.json" generateAPI="true" >

<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>

</AdditionalFiles>

</ItemGroup>

</Project>

rId479.png
//ExistingCode

//https://github. com/ignatandrei/RSCG_Examples
{

"Logging": {
"LogLevel": {

"Default": "Information",
"Microsoft": "Warning",

"Microsoft.Hosting.Lifetime": "Information"

}

} 3
"AllowedHosts": "x"
}//RSCG

rId482.png
//Usage

//https://github. com/ignatandrei/RSCG_Examples
endpoints.MapSettingsView<SettingsJson.appsettings>(Configuration);//RSCG

rId485.png
//GeneratedCode

//https://github.com/ignatandrei/RSCG_Examples

e e e e D S S
// <auto-generated>

// This code was generated by a tool.

// Runtime Version:

//

// Changes to this file may cause incorrect behavior and will be lost if

// the code is regenerated.

// </auto-generated>

e e e e D S S

using System;

using System.Collections.Generic;

using System.Runtime.Serialization;

using Microsoft.Extensions.Configuration;
using appSettingsEditor;

namespace SettingsEditor.SettingsJson

{

//[global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
[global::System.CodeDom.Compiler.GeneratedCodeAttribute("appSettingsEditorAPI", "2021.3.21.2300")]
public partial class LoglLevel: IAppSettingsConfig<LogLevel>

{
public object GetFromPropertyName(string propName, bool returnNull =false)q{
propName=propName?.ToUpper();
switch(propName){
case "DEFAULT":
return this.Default ;
case "MICROSOFT":
return this.Microsoft ;
case "MICROSOFTHOSTINGLIFETIME":
return this.MicrosoftHostingLifetime ;
default:
if(returnNull)
return null;
throw new ArgumentException("cannot found from LogLevel prop "+propName);
}
}
public IEnumerable<string> Properties(){
yield return "Default" ;
yield return "Microsoft" ;
yield return "MicrosoftHostingLifetime" ;
yield break;
}
[System.Text.Json.Serialization.JsonPropertyName("Default")]
public string Default { get; set; }
[System.Text.Json.Serialization.JsonPropertyName("Microsoft")]
public string Microsoft { get; set; }
[System.Text.Json.Serialization.JsonPropertyName("Microsoft.Hosting.Lifetime")]
public string MicrosoftHostingLifetime { get; set; }
public LogLevel LoadFromConfig(IConfiguration config)
{
config.GetSection("Logging.LogLevel").Bind(this);
return this;
}
}

//[global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
[global::System.CodeDom.Compiler.GeneratedCodeAttribute("appSettingsEditorAPI", "2021.3.21.2300")]
public partial class Logging: IAppSettingsConfig<Logging>

{
public object GetFromPropertyName(string propName, bool returnNull =false)q{
propName=propName?.ToUpper();
switch(propName){
case "LOGLEVEL":
return this.LoglLevel ;
default:
if(returnNull)
return null;
throw new ArgumentException("cannot found from Logging prop "+propName);
}
}
public IEnumerable<string> Properties(){
yield return "LogLevel" ;
yield break;
}
[System.Text.Json.Serialization.JsonPropertyName("LogLevel")]
public LogLevel LogLevel { get; set; }
public Logging LoadFromConfig(IConfiguration config)
{
config.GetSection("Logging").Bind(this);
return this;
}
}

//[global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
[global::System.CodeDom.Compiler.GeneratedCodeAttribute("appSettingsEditorAPI", "2021.3.21.2300")]
public partial class appsettings: IAppSettingsConfig<appsettings>

{
public object GetFromPropertyName(string propName, bool returnNull =false)q{
propName=propName?.ToUpper();
switch(propName){
case "LOGGING":
return this.Logging ;
case "ALLOWEDHOSTS":
return this.AllowedHosts ;
default:
if(returnNull)
return null;
throw new ArgumentException("cannot found from appsettings prop "+propName);
}
}
public IEnumerable<string> Properties(){
yield return "Logging" ;
yield return "AllowedHosts" ;
yield break;
}
[System.Text.Json.Serialization.JsonPropertyName("Logging")]
public Logging Logging { get; set; }
[System.Text.Json.Serialization.JsonPropertyName("AllowedHosts")]
public string AllowedHosts { get; set; }
public appsettings LoadFromConfig(IConfiguration config)
{
return config.Get<appsettings>();
}
}

}//RSCG

rId496.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Apparatus.AOT.Reflection" Version="0.2.0" />
</ItemGroup>

</Project>

rId499.png
//ExistingCode
//https://qgithub.com/ignatandrei/RSCG_Examples
//no special requirements

class Person

{

[1

public string { get; set; }

public string { get; set; }
}//RSCG

rId50.png
//ExistingCode
//https://github.com/ignatandrei/RSCG_Examples

<PropertyGroup>
<Version>2021.2.15.800</Version>
</PropertyGroup>//R5CG

rId502.png
//Usage
//https://github. com/ignatandrei/RSCG_Examples
var pOldPerson = new ();

= "Andrei";

var prop = . ().
foreach (var item in)

{

($"{item.Name} Attr: {item.Attributes.Length} value {item.Name}");
(, out var val)){
("value : " +)3

//RSCG

rId505.png
//GeneratedCode
//https://github.com/ignatandrei/RSCG_Examples
using System;

using System.Ling;

namespace Apparatus.AOT.Reflection
¢ public static class CopyConstructor_PersonExtensions
¢ [global::System.Runtime.CompilerServices.ModuleInitializer]
public static void Bootstrap()
! MetadataStore<global: :CopyConstructor.Person>.Data = _lazy;

¥

private static
global::System.Lazy<global::System.Collections.Generic.IReadOnlyDictionary<string, IPropertyInfo>>
_lazy = new global::System.Lazy<global::System.Collections.Generic.IReadOnlyDictionary<string,
IPropertyInfo>>(new global::System.Collections.Generic.Dictionary<string, IPropertyInfo>
{
{ "FirstName", new
global::Apparatus.AOT.Reflection.PropertyInfo<global::CopyConstructor.Person,string>(
"FirstName",
new global::System.Attribute[]
{
new global::System.ComponentModel.DataAnnotations.RequiredAttribute(),
})

instance => instance.FirstName, (instance, value) => instance.FirstName =
value)

})
{ "LastName", new
global::Apparatus.AOT.Reflection.PropertyInfo<global::CopyConstructor.Person,string>(
"LastName",
new global::System.Attribute[]
{

})

instance => instance.LastName, (instance, value) => instance.LastName = value)

18

internal static global::System.Collections.Generic.IReadOnlyDictionary<string, IPropertyInfo>
GetProperties(this global::CopyConstructor.Person value)

{

return _lazy.Value;
}
+
}//RSCG

rId521.png
[
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0</TargetFramework>
</PropertyGroup>
<ItemGroup>

<PackageReference Include="RSCG_TimeBombComment" Version="2021.9.14.2237" />
</ItemGroup>

</Project>

rId524.png
//ExistingCode
//https://github.com/ignatandrei/RSCG_Examples

//TB: 2021-09-13 this is a comment transformed into an error
//TB: and this is a warning

//TB: 9999-12-30 and this will not appear
Console.WriteLine("See the TB comment above ? ");//RSCG

rId527.png
//Usage

//https://github. com/ignatandrei/RSCG_Examples
//TB: yyyy-MM-dd this is a comment transformed into an error//RSCG

rId53.png
//Usage

//https://github.com/ignatandrei/RSCG_Examples
var strVersion=ThisAssembly.Info.Version;
Console.WriteLine(strVersion);//RSCG

rId530.png
//GeneratedCode
//https://github.com/ignatandrei/RSCG_Examples

2> .cs(9,13,9,73): : this s
into

2> .cs(10,13,10,40): 8 this is
//RSCG

rId541.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0</TargetFramework>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="StructRecordGenerator" Version="0.4.2">
<PrivateAssets>all</PrivateAssets>
<IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
</PackageReference>
</ItemGroup>

</Project>

rId544.png
//ExistingCode
//https://github.com/ignatandrei/RSCG_Examples
[. (

class Person

{

[|

public string { get; set; }

public string { get; set; }
}//RSCG

rId547.png
//Usage
//https://github.com/ignatandrei/RSCG_Examples

var = new Person();

p.FirstName = "Andrei";

//put here a debug watch to see p
Console.WriteLine(p.ToString());//RSCG

rId550.png
//GeneratedCode
//https://github.com/ignatandrei/RSCG_Examples
partial class Person
{
/// <inheritdoc/>
public override string
{
var sb = new
("Person ");
. "{ ")
if (sb))
{
(" ")
}

("}")s
return . (0, . . , /*String rep limit*/ 1024));

¥

/// <summary>
/// Prints the content of the instance into a given string builder.
/// </summary>
protected virtual bool ()
{
("s =");
((object)s);
(" ")
("ID = ");
(ID);
(" ")
("FirstName = ");
((object))5
(" ")
("LastName = ");
. ((object))8
return ;
}
}//RSCG

rId56.png
//GeneratedCode
//https://github.com/ignatandrei/RSCG_Examples
/// <summary>
/// Provides access to the current assembly information as pure constants,
/// without requiring reflection.
/// </summary>
partial class ThisAssembly
{
/// <summary>
/// Gets the AssemblyInfo attributes.
/// </summary>
[("ThisAssembly.AssemblyInfo", "1.0.0")]
[1
public static partial class Info
{
public const string = @"RSCG_Version";

public const string = @"Debug";

public const string = @"2021.2.15.800";

public const string = @"2021.2.15.800";
public const string = @"RSCG_Version";

public const string = @"RSCG_Version";

public const string = @"2021.2.15.800";

}
}//RSCG

rId561.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0</TargetFramework>
</PropertyGroup>
<ItemGroup>
<AdditionalFiles Include="../AutoMethod.txt" />
<PackageReference Include="AOPMethodsCommon" Version="2021.6.11.907" />
<PackageReference Include="AOPMethodsGenerator" Version="2021.6.11.907" />

</ItemGroup>
<PropertyGroup>
<EmitCompilerGeneratedFiles>true</EmitCompilerGeneratedFiles>

<CompilerGeneratedFilesOutputPath>$(BaseIntermediateOutputPath)Generated</CompilerGeneratedFilesOutputP
ath>

</PropertyGroup>
</Project>

rId564.png
//ExistingCode
//https://github.com/ignatandrei/RSCG_Examples
using ;

using

using

namespace AOPMarkerCI
{
[(= .
= "../AutoMethod.txt")]
partial class UnderTest
{
[|

public async Task<int> ()

{

await Task. (1000);
var ret = (DateTime.)3
return % 2=07?1:0;

}

[|

private int (DateTime

{

return

¥

¥
}//RSCG

rId567.png
//Usage
//https://github.com/ignatandrei/RSCG_Examples

Console.WriteLine("Run the autoci file");
var underTest = new UnderTest();

int 1 = awalt underTest.Methodl();
Console.WriteLine($"result:{i}");//RSCG

rId570.png
//GeneratedCode
//https://github. com/ignatandrei/RSCG_Examples

// <auto-generated>

V4
V4
V4
V4

This code was generated by a tool.

Changes to this file may cause incorrect behavior and will be lost if
the code is regenerated.

// </auto-generated>

using System;

using System.Collections.Generic;
using System.CodeDom.Compiler;

using System.Runtime.CompilerServices;
using System.Diagnostics;

namespace AOPMarkerCI {

}

[GeneratedCode("AOPMethods", "2021.6.11.907")]
[CompilerGenerated]
public partial class UnderTest{

//autoMethodl

public async System.Threading.Tasks.Task<int> Methodl (){

Console.WriteLine("start method autoMethodl at " +utcTime);

try{
return awalt autoMethodl();

}
catch(Exception ex){

Console.WriteLine($"--autoMethodl exception {ex.Message}");

throw;
}
finally{

utcTime =System.DateTime.UtcNow;
Console.WriteLine("end method autoMethodl");

}//end Methodl
//autoMethod?

public 1int Method2 (System.DateTime now){
var utcTime =System.DateTime.UtcNow;

Console.WriteLine("start method autoMethod2 at " +utcTime);
string valnow ;
try{
valnow = System.Text.Json.JsonSerializer.Serialize(now);
}
catch(Exception ex){
valnow = "Error serializing parameter now : "+ ex.Message;
}

Console.WriteLine("Argument_now :" + valnow);

try{
return autoMethod2(now);

}
catch(Exception ex){

Console.WriteLine($"--autoMethod2 exception {ex.Message}");

throw;
}
finally{

utcTime =System.DateTime.UtcNow;
Console.WriteLine("end method autoMethod2");

}//end Method2

//RSCG

rId579.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="BoilerplateFree" Version="1.2.0" />
</ItemGroup>

</Project>

rId582.png
//ExistingCode
//https://github.com/ignatandrei/RSCG_Examples
[|
public partial class Person:
{

public void ()

{

("Foo");

}

//dummy

private string s { get; set; }

public int { get; set; }

public string { get; set; }

//dummy

public static string { get; set; }
}//RSCG

rId585.png
//Usage
//https://github.com/ignatandrei/RSCG_Examples

IPerson p = new Person();
p.Name = "Andrei";
p.Foo();

Console.WriteLine(p.Name);//RSCG

rId588.png
//GeneratedCode

//https://github.com/ignatandrei/RSCG_Examples
public interface IPerson {

public void Foo();

public int ID {get; set; }
public string Name {get; set; }
}//RSCG

rId68.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.1l</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="AOPMethodsCommon" Version="2021.1.23.1000" />
<PackageReference Include="AOPMethodsGenerator" Version="2021.1.23.1000" />
</ItemGroup>

</Project>

rId71.png
//ExistingCode
//https://github. com/ignatandrei/RSCG_Examples
[(= .

public enum

}//RsCG

rId74.png
//Usage
//https://github.com/ignatandrei/RSCG_Examples

var fromInt = enumMathematicalOperation.ParseExactMathematicalOperation(1l);

var fromStr = enumMathematicalOperation.ParseExactMathematicalOperation("add");
Console.WriteLine(fromInt + "-"+fromString);//RSCG

rId77.png
//GeneratedCode
//https://github.com/ignatandrei/RSCG_Examples
[GeneratedCode("AOPMethods", "")]
[CompilerGenerated]
public static partial class enumMathematicalOperation{
J*
public static int idMathematicalOperation(){
System.Diagnostics.Debugger.Break();
return 1;
}
2y
public static RSCG_Enum.MathematicalOperation ParseExactMathematicalOperation(this long value,
RSCG_Enum.MathematicalOperation? defaultValue = null){
if(0 == value)
return RSCG_Enum.MathematicalOperation.None;
if(1 == value)
return RSCG_Enum.MathematicalOperation.Add;
if(2 == value)
return RSCG_Enum.MathematicalOperation.Multiplication;

if(defaultValue != null)
return defaultValue.Value;

throw new ArgumentException("cannot find " + value +" for RSCG_Enum.MathematicalOperation ");

}

public static RSCG_Enum.MathematicalOperation ParseExactMathematicalOperation(this string value,
RSCG_Enum.MathematicalOperation? defaultValue = null){

//trying to see if it is a value inside
//1f(!string.IsNullOrWhiteSpace)
if(long.TryParse(value, out long valueParsed)){

return ParseExactMathematicalOperation(valueParsed);

¥

i1f(0==string.Compare("None" , value, StringComparison.InvariantCultureIgnoreCase))
return RSCG_Enum.MathematicalOperation.None;
i1f(0==string.Compare("Add" , value, StringComparison.InvariantCultureIgnoreCase))
return RSCG_Enum.MathematicalOperation.Add;
i1f(0==string.Compare("Multiplication" , value,
StringComparison.InvariantCultureIgnoreCase))
return RSCG_Enum.MathematicalOperation.Multiplication;

if(defaultValue != null)
return defaultValue.Value
throw new ArgumentException("cannot find " + value +" for RSCG_Enum.MathematicalOperation ");

}//RSCG

rId90.png
[
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.1l</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="JsonByExampleGenerator" Version="0.7.0" />

<PackageReference Include="Microsoft.Extensions.Configuration.Binder" Version="5.0.0" />
<PackageReference Include="Microsoft.Extensions.Configuration.Json" Version="5.0.0" />

</ItemGroup>

<ItemGroup>
<!-- Files must have the .json extension -->
<AdditionalFiles Include="Persons.json">

<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>

</AdditionalFiles>

</ItemGroup>

</Project>

rId93.png
//ExistingCode

//https://github.com/ignatandrei/RSCG_Examples
{

"FirstName": "Andrei",
"LastName": "Ignat",

"Blog": "http://msprogrammer.serviciipeweb.ro/"//RSCG

rId96.png
//Usage
//https://github.com/ignatandrei/RSCG_Examples
var pl = new ()3

= "http://msprogrammer.serviciipeweb.ro/";

var config = new ()
("persons.json")

(Ds

>();
();//RSCG

rId99.png
//GeneratedCode

//https://github.com/ignatandrei/RSCG_Examples

[(= "Person", = "JsonToClass.Json.Persons")]
public partial class Person

{

[(= "FirstName", =0)]
public string { get; set; }

[("LastName", =1)]

public string { get; set; }
[("Blog”, = 2)]
public string { get; set; }

public static ([
{

return

}

}//RSCG

